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The free surface behaviour of a volatile wetting liquid at low gravity is studied using 
scaling and numerical techniques. An open cavity model, which was applied in part 1 
to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate 
the influence of convection on surface morphology with length scales and sub- 
cooling/superheating limits of 1 < D < lo2 pm and N 1 K, respectively. Results show 
that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow 
and to a lesser extent the recoil force associated with evaporation and condensation. 
With subcooling, thermocapillarity produces a suction about the pore centreline that 
promotes loss of mechanical equilibrium, while condensation exerts an opposing force 
that under some conditions offsets this destabilizing influence. With superheating, 
thermocapillarity and evaporation act in the same direction and mutually foster 
surface stability. All of these trends are magnified by high capillary and Biot numbers, 
and the stronger circulation intensities associated with small contact angles. These 
phenomena strongly depend on the thermal and interfacial equilibrium between the 
liquid and vapour, and have important ramifications for systems designed to maintain 
a pressure differential across a porous surface. 

1. Introduction 
Several engineering applications exploit the capillary-dominant environment of 

porous surfaces to segregate liquids from either vapours or gases. The liquid/vapour 
interface typically consists of numerous small menisci which attach to a geometrically 
complex wicking structure and sustain a pressure difference between the two phases. 
The maintenance of this pressure differential and mechanical equilibrium for the 
meniscus within each surface pore is referred to as 'fluid retention' and is crucial for 
proper functioning of these systems. 

In part 1 of this study (Schmidt, Chung & Nadarajah 1995), we investigated the fluid 
mechanics and heat transfer in such pores. Although the problem domain used was 
similar to the float zones studied in materials processing, the features of Cquid/vapour 
phase change, small contact angles and liquid exchange with a large reservoir made this 
problem unique and in some ways more complex than previous float-zone assessments. 
The numerous unknowns associated with coupled solution of the flow field, 
temperature and free surface geometry prompted us to first analyse the problem 
assuming a non-deforming meniscus. This was equivalent to presuming a vanishingly 
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small ratio between viscous and surface tension forces (i.e. low capillary number Ca) 
and was consistent with the length scales considered in materials processing 
applications. Even with this simplification, we found the flow and temperature fields to 
be quite different than those encountered in float-zone problems owing to the com- 
petition between thermocapillary and evaporation/condensation-induced circulation. 

We also identified several reasons to suspect that convection could contribute to 
surface deformation and possibly loss of mechanical equilibrium. First, the cavity 
dimensions characteristic of porous surfaces are extremely small (i.e. 1 < D < 10' pm) 
and yield larger Ca values than float-zone-type problems. Hence, the convection 
associated with thermocapillarity and liquid/vapour phase change could exert a strong 
influence on surface morphology. Secondly, the study showed that the cellular flow and 
small contact angles present in individual pores promote high dynamic pressure 
gradients near the meniscus contact line. This suggests that fixed meniscus shapes 
cannot be sustained under some conditions. Thus, a complete analysis of this problem 
requires that meniscus deformation be considered. 

The complexity of including free surface deformation poses a serious challenge from 
an analytical standpoint. The computational resources necessary to perform a 
complete parametric study, as we did earlier for the fixed meniscus problem, are almost 
prohibitive. It is desirable to first perform a simplified analysis that identifies the 
parameter ranges where meniscus deformation becomes significant. A more exact 
analysis involving simultaneous solution of the flow field and surface at sensitive 
parameter values can then follow. In the next section, we present the modifications to 
the original theoretical model required to accommodate meniscus deformation. A 
description of the solution method used to perform both the preliminary and more 
exact analyses is given in Q 3, and is followed by a presentation and discussion of results 
in $54 and 5.  

2. Theoretical model 
To examine the influence of deformation, we employ the same problem domain, 

governing equations, boundary equations and assumptions that we used in part 1 
(Schmidt et al. 1995). The domain is depicted in figure 1, and consists of a two- 
dimensional rectangular groove partially filled with an incompressible Newtonian 
liquid. The cavity is assumed to be oriented with respect to a uniform vertical 
acceleration field. The left and right sides of the pore (boundaries 1 and 3, respectively) 
consist of solid vertical sidewalls. The lower boundary 2, however, is assumed to open 
to a large reservoir of liquid to enable balancing of mass flow through the cavity and 
approximate the performance of a capillary structure. Unlike in part 1, the upper 
surface (boundary 4) is represented by a deformable meniscus which is symmetric 
about the pore centreline and bounded by an inert vapour. The shape of the interface 
is defined by the surface height above the base y@) which is a function of the lateral 
coordinate x,. The interface is assumed to wet the solid sidewalls at an acute contact 
angle w,  and is further characterized by the unit normal and tangent vectors (nc and sf) 
and contour angle a. 

Another dependent variable is introduced by y(8) which must be coupled with 
solution of the flow parameters. We obtain an equation for y(s) from the normal 
component of the jump momentum balance along the meniscus. Ignoring viscous stress 
in the vapour, this simplifies to 

(1) (P-pgy(8)-P(u)) + j 2 ( l / p -  l /p(u))-2p1/; , jn,n,+y~ = 0. 
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FIGURE 1. Problem domain. 

The variables b, P, g,  p, p, y and K are the velocity, dynamic pressure, gravitational 
acceleration, dynamic viscosity, density, surface tension and curvature, respectively. 
Note that the radius of curvature 1 / ~  is considered positive when it extends into the 
vapour. The superscript (v) refers to the variables in the vapour phase. The expression 
P-pgy(8) - P(") in (1) includes the hydrostatic contribution to the total pressure within 
the liquid; j2(l/p- l/p(")) represents the momentum change and recoil force arising 
from liquid evaporation or vapour condensation ; j is the mass flux across the surface 
and is obtained from the jump mass balance, that is 

where V y )  is the velocity of the interface. Because p >p("), the momentum flux on the 
vapour side of the surface is greater than that on the liquid side. Consequently, the 
recoil force exerted on the interface always points into the liquid, regardless of the 
direction of mass transfer. The third term, 2,u6,?.nfn,, reflects the effects of viscous 
stress, while the last term Y K  represents the capillary pressure modification due to 
surface tension and curvature. 

Using the same scaling methodology applied in part 1, (1) and (2) are non- 
dimensionalized according to the pore width D,  viscous time scale D2/v  and maximum 
cavity temperature difference lATl = IT,-T,I. The variables v, and T, are the 
kinematic viscosity, sidewall temperature and vapour temperature, respectively. 
Equation (1) can be converted into an expression for curvature, which in dimensionless 
form becomes 

Y (3) 

where Bo = pgD2/y,, (4) 

Boy(')-Ca(P- P("))+ Vr T2+2CaJ&njn, 
I -CrT 

K =  

Bo, Cr and Ca are the Bond, crispation and capillary numbers, respectively, while Vr 
is the recoil parameter. Here,& is the ratio of liquid to vapour density p/p("), yt is the 
surface tension at the lowest temperature, and Rs is the interfacial resistance which was 
defined in part 1.  The terms comprising (3) are the different normal force contributions 



352 G. R .  Schmidt, T.  J .  Chung and A .  Nadarajah 

FIGURE 2. Sensitivity of dimensionless parameters associated with solution of y@): upper 
and lower bounds. 

along the surface, where Boy:), Ca(P-P(''), Vr T2, 2Cav,jn,n, and ( 1  - Cr T)-' 
represent the influence of hydrostatic pressure, dynamic pressure, vapour recoil, 
viscous stress and surface tension thermal variation, respectively. T is a corrected 
scaled temperature whose value depends on the maximum and minimum temperature 
in the cavity. For superheating, T = T, while for subcooling, i= = T+ 1. Note that Ca, 
Cr and the Marangoni number Ma defined in our previous study are not mutually 
independent, since Cr can be expressed as Cr = MaCa/Pr. 

In addition to (3), y(') must satisfy two boundary conditions at the sidewalls. These 
are the pinning condition and the contact angle constraint, and can be expressed as 

Equations (3)-(8), along with equations (1)-(16) in part 1, completely define the 
problem of a freely deforming liquid pore. 

To make the numerical investigations more relevant, we first ascertain the magnitude 
and sensitivity of the dimensionless groupings arising in (3), namely Bo, Vr, Cr and Ca, 
over a range of thermophysical properties, pore widths D and superheating/subcooling 
limits IATJ. Based on the arguments given earlier in part 1, we consider a range of D 
from to lo4 pm and a range for IATJ of lo-' to 10 K. Plots of the upper and lower 
bounds for these parameters as a function of D are shown in figure 2. 

Bo and Ca are independent of JATI and exhibit nearly opposite functional 
dependence on D (i.e. Bo a D2 and Ca a D-'). This implies the existence of a capillary- 
dominant regime at small characteristic dimensions ( D  - 1 pm) where Ca 9 Bo, and 
the velocity and dynamic pressure terms in (3) influence surface morphology. 
Depending on the value of 1AT1, Vr and Cr may also affect the geometry. Although Vr 
is proportional to Ca, it also varies inversely with the square of Rs (where Rs a 1/D) 
which means that Vr a D.  At larger characteristic dimensions (D  - lo4 pm), Bo 
predominates, and we can effectively ignore contributions from dynamic pressure. 
Additionally, both Vr and Cr are small at low JATJ,  and here, too, we expect the 
meniscus to be governed entirely by hydrostatic pressure. However at higher 
superheating/subcooling levels, (IATI = 10 K) contributions from both Vr and Cr can 
exceed hydrostatic effects. In summary, we see that Bo can be neglected for the size 
range of interest here. For calculation of the meniscus surface, Cr can range from lo-' 

y@)  = 1 and Jdy(')'/dx,l = tan(n/2-o) at x1 = 0 and 1. (8) 
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for the low value of superheat/subcooling to lo-' at 1 K. We also expect a contribution 
from Ca which varies from to 

3. Solution methodology 
Since a detailed description of the numerical model is given in part 1, we will only 

summarize its key features in this section. Although it is possible to structure a 
numerical solution so that the surface is determined simultaneously with 6, P and T, 
this approach is memory-intensive and requires manipulation of an extremely large 
sparse coefficient matrix. An alternative approach, which was implemented by Cuvelier 
& Driessen (1986) and Hyer, Jankowski & Neitzel (1991), relaxes the normal-stress 
boundary condition and calculates surface position y @ )  in an iteration loop outside the 
steady-state flow-field solution. In this 'trial method', the meniscus solution is the 
outermost iteration in a 5-loop flow-field solution procedure. The problem of 
accommodating small contact angles is handled by replacing K with aa/as and 
transforming (3) into an integro-difference equation. The surface position s and a can 
then be treated as independent and dependent variables, respectively. This approach 
was applied to purely hydrostatic configurations by Concus (1968) and Geiger (1966), 
and can be extended to include the effects of dynamic pressure, velocity and interfacial 
temperature. The resulting expression is 

1-8 

C- Ca AP+ Vr A(T2) + 2Ca A( K,J nj n, + Boj sin ads  
9 (9) 0 _ -  - aa 

as 1-CrT 

where 2 is the curvature at the meniscus centreline given by 

Here, the subscript c refers to the values of the variables at the meniscus centreline. 
Between the surface nodes at which flow-field data are available, T, 6 and P values are 
interpolated using the same order as their element-level variance. We have expressed 
(9) in a form where C corresponds to the curvature at the meniscus centreline. 
Consequently, the curvature at other points along the surface is a function of Z and 
the change in pressure, temperature and velocity relative to the centreline values, that 
is AP = P-P, ,  A(T2) = T 2 -  T: and A ( J 9  = &- Vd,j. 

The entire surface extending from x1 = 0 to 1 is solved by applying the shooting 
method to each half of the meniscus. At the centreline x1 = 0.5, we set 01 = 0, assume 
a value of 2 and calculate a at successive steps along the contour until the contact line 
is reached. If the final contact angle estimate fails to match, within a specified tolerance, 
the desired value of w, C is adjusted, and the contour integration is repeated. The new 
estimate of C is obtained using a simple bisection algorithm, which can accommodate 
large positive or negative values of Z. 

4. Preliminary analysis 
Although the method outlined above can be used to obtain steady-state solutions, 

it is computationally too expensive for a complete parametric assessment. It is 
preferable to first perform a preliminary analysis which treats surface deformation as 
a second-order effect. In this approach, the velocity, pressure and temperature fields 
which we determined earlier with a fixed surface (part 1) are used to calculate meniscus 
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shape via the integration procedure described in $3. We can also apply this method 
to estimate the contribution from each stress term in (3). For example, the influence of 
surface tension variation due to temperature change, which is embodied in the 
denominator of (3), is examined by varying Cr while holding the parameter coefficients 
of all the other terms equal to zero. This approach is valid for small deformations but 
fails when the deflections become large. If the analysis indicates significant deformation 
at values of Ca, Cr and Vr within the identified scaling limits, then the complete 
solution must be considered. 

In this section we estimate the changes in meniscus shape caused by each term in (3) 
and (8), namely surface tension, recoil force, pressure, viscous stress and contact angle. 
When examining deformation, it is important to note that all surface variables are fixed 
at the contact line. Thus, variations in surface morphology are due to the change of 
these variables relative to their contact line values. 

4.1. Surface tension dependence 
Surface tension variation along a non-isothermal meniscus contributes to deformation 
not only through the convection arising from thermocapillary stress but also through 
the adjustment of capillary pressure to changes in temperature. The latter effect is 
manifested by the (1 - Cr T)-' term in (3), where Cr represents the sensitivity of surface 
tension to temperature. Warmer regions of the surface assume larger curvatures K to 
offset the reduction in surface tension. The ratio of surface tension at the highest 
temperature yh to that at the lowest temperature yl is given by 

yJyl = 1 - Cr. (1 1) 

A limitation of the linear equation of state for y and the definition of Cr becomes 
obvious when Cr approaches 1. In this case, the maximum temperature limit Th 
corresponds to the critical temperature, and with superheating y vanishes and l / ~ +  co 
at the contact line. Although the parameter bounds obtained in $2 indicate that the 
range of Cr is small enough to justify use of a linear approximation, meniscus shapes 
will nonetheless be determined for Cr values close to unity in order to identify the 
limiting values for strong deformations. 

Surface-tension-induced deformation is first examined using the basic-state 
interfacial temperature distributions (Ma = 0 and Rs = co). Half-cavity meniscus 
contours for Bi = 1, 10 and lo2, and Cr = 0.5,0.9,0.99 and 0.999 are shown in figure 
3. The responses to the two heating modes are opposite. With subcooling, the 
temperature at the centreline is a maximum and decreases to the minimum & at the 
sidewalls. Because of the lower surface tension at the centre, the surface assumes a 
higher curvature there relative to the sidewall region. At low Bi, the effect is small, even 
at high Cr, because temperature remains close to the minimum limit along the entire 
surface. At high Bi, the temperature in the centre approaches the maximum and the 
surface becomes more sensitive to Cr. Although the deformation appears to be quite 
large at high Bi, it is still negligible for the more realistic values of Cr < 0.5. With 
superheated boundaries, temperature decreases towards the centreline, where the 
curvature assumes its minimum value. The result is a flattening and raising of the 
meniscus with respect to the contact line. At low Bi, the temperature remains close to 
the high sidewall value along the entire surface and is more sensitive to variations in 
Cr. At higher Bi, however, the lower temperature at the centre yields a surface that is 
less sensitive to Cr. 

The influence of fluid convection on surface-tension-induced deformation reflects the 
departure from the basic-state interfacial temperature distribution. Evaporation and 
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FIGURE 3. Surface-tension-induced deformation based on basic-state interfacial temperature 
distribution for w = 15": halfcavity meniscus contours for (a) Bi = 0, (b) Bi = 10, (c) Bi = 100. 
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FIGURE 4. Surface-tension-induced deformation based on surface temperature distribution for 
pure interfacial flow, where Ma = 0, Rs = lO-l, Bi = 1 and w = 15". 

condensation both increase the average temperature of the interface. This reduces the 
average temperature gradient for evaporation but increases it for condensation. The 
effect of pure interfacial flow on surface geometry is shown in figure 4 for Bi = 1 and 
Rs = 10-l. Although the differences are quite small, condensation appears to increase 
deformation relative to the basic state, while evaporation decreases it. The surface is 
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FIGURE 5. Surface-tension-induced deformation based on surface temperature distribution for 
pure thermocapillary flow, where Mu = lo3, Rr = lo3, Bi = 10 and o = 15". 

also more sensitive to Cr for both heating modes because of the increase in average 
temperature. The sensitivity of surface morphology to pure thermocapillary flow with 
Mu = lo3 and Bi = 10 is shown in figure 5 .  Unlike the previous cases, the 
thermocapillary convection associated with subcooling tends to lower interfacial 
temperature relative to the basic state, while superheating raises it. Consequently, the 
subcooling regime exhibits less sensitivity to Cr than its basic-state counterpart in 
figure 3. The deformation associated with superheating, however, behaves very 
similarly to the basic state at Bi = 10. In all these cases, the effect of surface tension 
appears to be negligible for Cr less than 0.5, and can safely be ignored in this problem. 

4.2. Vapour recoil dependence 
The recoil force is proportional to the square of the surface mass flux and temperature 
difference between the meniscus and bulk vapour, which translates to a T2 dependence. 
To examine its influence, we employ, as before, the basic-state temperature distribution 
as an initial reference. Although this regime lacks the effect of internal convection, it 
does illustrate the fundamental response to changes in thermal non-equilibrium. Figure 
6 shows the meniscus shapes for Bi = 1, 10 and lo2. Since the temperature magnitudes 
for superheating and subcooling are equivalent, the recoil force distribution for the 
basic state is independent of heating mode. The contribution of recoil to surface 
curvature is highest near the contact line because the temperature difference and mass 
flux are a maximum there. That is, the curvature must be higher near the sidewalls to 
compensate for the larger normal force directed into the liquid. Over the entire range 
of Bi, raising Vr magnifies the variation in curvature and tends to flatten the surface 
relative to the contact line. Unlike the influence of Cr, the curvature dependence on Vr 
is strong, and at very high Vr the centreline curvature can become negative and form 
an inflection along the meniscus. 

It is evident from figure 6 that the sensitivity to Bi is maximized between 1 and lo2 
owing to the shift in temperature gradient towards the sidewall with increasing Bi. As 
Bi is lowered, the scaled temperature along the meniscus approaches the isothermal 
sidewall value. Thus, the surface temperature difference and curvature are relatively 
constant, and deformation is minimized. As Bi is increased, the variation of the 
centreline meniscus temperature from the sidewall value is higher, and causes a 
corresponding increase in surface deflection. However, at very high values of Bi, the 
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FIGURE 6. Vapour-recoil-induced deformation based on basic-state interfacial temperature 
distribution for o = 15": (a) Bi = 0, (b) Bi = 10, (c) Bi = 100. 
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FIGURE 7. Vapour-recoil-induced deformation based on surface temperature distribution for pure 
thermocapillary flow, where Mu = log, Rs = lo', Bi = 10 and w = 15". 

interfacial distribution approaches the bulk vapour temperature followed by a sharp 
increase or decrease to the sidewall value near the contact line. Because the influence 
of this sharp change on overall curvature is slight, the deformation diminishes with 
increased Bi after attaining its peak value. 

The influence of pure thermocapillary flow (Ma = lo8 and Bi = 10) is illustrated in 
figure 7. Although the convective influence of phase change is not present here, the 
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FIGURE 8. Vapour-recoil-induced deformation based on surface temperature distribution for pure 
interfacial flow, where Ma = 0, Rr = lo-' and o = 15": (a) Bi = 1, (6) Bi = 10, (c) Bi = 100. 

temperature distribution adequately reflects the effect of thennocapillary convection. 
With subcooling, thermocapillary flow shifts the temperature gradient towards the 
sidewall and causes an upwelling of cool liquid that flattens the thermal distribution 
around the centre of the cavity. This is similar to increasing Bi in that the meniscus 
becomes less sensitive to recoil. The deformation here is less than in the corresponding 
basic state, with the maximum deformation occurring at a lower value of Bi. Although 
it is not shown here, varying Bi causes deformation similar to the response based on 
the basic state in figure 6. Superheating, which acts opposite to subcooling, counters 
the tendency of the surface temperature distribution to flatten with increased Bi. Thus, 
the maximum deformation occurs at higher Bi. As with subcooling, the deflection 
decreases at very high and low Bi. 

The sensitivity of surface morphology to pure condensation and evaporation 
(Rs = lo-' and Bi = 10) is shown in figure 8. Condensation accumulates warm liquid 
around the centreline and increases the surface temperature gradient, while evaporation 
flattens the temperature distribution. Compared with the basic state, condensation 
produces a maximum deformation at lower values of Bi, while evaporation does so 
at higher values of Bi. Surface deflection again diminishes in the limit of very high and 
low Bi. 

4.3. Dynamic pressure dependence 
Our analysis in part 1 showed that fluid motion can yield substantial pressure 
variations along the free surface. The influence of the dynamic pressure on surface 
morphology is manifested by the C a p  term in (3) and is shown for pure thermocapillary 
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FIGURE 9. Pressure-induced deformation based on surface temperature distribution for pure thermo- 
capillary flow, where Mu = lo', Rr = lo8 and o = 15': (a) Bi = 1, (b) Bi = 10, (c) Bi = 100. 
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FIGURE 10. Pressure-induced deformation based on surface temperature distribution for pure 
combined thermocapillary/interfacial flow, where Mu = los, Rs = lO-l, Bi = lo* and w = 15'. 

flow (Ma = lo3 and & = los) in figure 9. The capillary number Ca is a measure of the 
magnitude of the reference surface tension in that higher values of Ca correspond to 
lower y. Since surface tension acts to minimize the interfacial area and deformation, 
the deflection becomes greater with larger values of Ca. The increase in deformation 
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with Bi is consistent with the substantial increase in interfacial pressure gradient noted 
in our previous study. In part 1 it was shown that subcooling causes the pressure to 
drop sharply from the sidewalls resulting in a suction in the middle of the cavity. It is 
apparent in figure 9 that this suction pulls the surface down in the centre. Superheating, 
however, produces a pressure increase in the centreline relative to the sidewalls, which 
raises the meniscus relative to the undeformed state. The trends are the same as that 
for subcooling in that higher values of Bi and Ca increase deformation. 

Our earlier analysis also showed that the surface pressure gradient rises substantially 
when thermocapillary flow is combined with evaporation or condensation. This should 
cause a corresponding increase in surface deformation. The steady-state surface 
calculations shown for the combined flow case (Mu = lo3, Rs = lo-’ and Bi = lo2) in 
figure 10 confirm that the deformation does indeed increase. It is clear from figures 9 
and 10 that, as anticipated from part 1 ,  the interfacial distribution of dynamic pressure 
strongly affects surface morphology. 

4.4. Viscous stress dependence 
The effect of viscous stress on surface morphology is represented by the 2 C ~ K , ~ n , n ,  
term in ( 3 ) .  With the integral solution methodology, it is preferable to transform the 
term into an expression that does not involve the velocity gradient. Application of the 
chain rule and the scaled equations for mass flux and surface heat transfer yield 

(12) 
where S = Bi/Rs. ST is termed the ‘flux component’ and represents stress arising from 
flow normal to the surface. nj ni , j  is the so-called ‘curvature component’. With a non- 
volatile surface, 1/Rs = 0 and S vanishes, while with a flat surface, n, is constant and 
n,,j = 0. The curvature component can also vanish if the tangential velocity is 
neghgibly small. 

We first examine the response using the basic-state temperature distribution as a 
reference. Since there is no internal convection associated with this regime, only the 
influence of ST can be examined. Figure 11 shows the half-cavity surfaces with 
subcooled and superheated boundaries for Bi = 1, 10 and lo2 where the sensitivity is 
characterized in terms of CaS. Unlike recoil, which is proportional to the square of 
temperature, the flux term can assume negative and positive deviations, depending on 
the temperature gradient relative to the centreline. Subcooling produces positive 
temperature differences and mass fluxes similar to the recoil force variation. The 
surface deformation consequently resembles the response to the recoil parameter. 
Superheating, on the other hand, results in a negative temperature difference between 
the meniscus and the bulk vapour and causes a depression about the centreline. 

Increasing the product CaS is equivalent to decreasing either the surface tension y 
or interfacial resistance Rs. Figure 11 clearly shows that both of these trends magnify 
meniscus deformation. The effect of Bi on the flux component, by modifying the 
surface temperature distribution, is similar to that of the recoil parameter and dynamic 
pressure. Figure 11 also shows that the deflection undergoes a maximum at an 
intermediate Bi and vanishes at the limits of very low and high Bi. 

Although vapour recoil produces greater deformation than this case, due to its 
quadratic dependence on the temperature difference, the viscous-dependent deflection 
based on the basic-state temperature is nonetheless substantial. This seems to indicate 
that viscous stress contributions to the interfacial curvature are significant. However, 
when the more meaningful cases of pure evaporation/condensation and pure 
thermocapillary flow are considered, the results are quite different. Figure 12 illustrates 

K,, 5 n, = - ST- K nj q,,, 
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FIGURE 1 1. Viscous-stress-induced deformation based on basic-state interfacial temperature 
distribution for w = 15': (a) Bi = 1, (b) Bi = 10, (c) Bi = 100. 
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FIGURE 12. Viscous-stress-induced deformation based on surface temperature distribution for pure 
interfacial flow, where Mu = 0, Rs = lO-l, Bi = 10 and w = 15". 
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FIGURE 13. Viscous-stress-induced deformation based on surface temperature distribution for pure 
thermocapillary flow, where Mu = lo8, Rs = lo8, Bi = 10 and w = 15". 

the influence of pure evaporation and condensation (with Rs = lo-' and Bi = lo), and 
figure 13 shows the results for pure thermocapillary flow (Ma = lo3 and Bi = 10). The 
viscous stress contributions are small for both cases and can be safely neglected. 

4.5. Contact angle dependence 
When considering the isothermal static solution, the only effect of contact angle is a 
variation in centreline curvature. That is, lower contact angles translate to an increase 
in curvature along the entire meniscus. With deformation, however, the influence of 
contact angle must be viewed within the context of convection in the cavity since in part 
1 it was shown that the flow field is also extremely sensitive to w .  The primary effects 
of lowering the contact angle are an increase in the net thermocapillary stress force, 
half-cavity circulation and interfacial pressure gradient. 

With subcooling, the positive pressure gradient towards the sidewall is amplified 
with reduction of contact angle. This applies even when Ca and all other parameters 
are held constant. The effect of this tends to magnify the depression from the 
isothermal static reference, and is further accentuated by the non-convective increase 
in centreline curvature associated with reduced contact angle. With superheating, the 
pressure gradient is also increased by reducing the contact angle. However, since the 
deformation is positive relative to the contact line, this tends to counter the centreline 
curvature associated with the isothermal static solution. It should be clear that the first- 
order influence of contact angle on deformation reflects the convection-induced 
dependence on dynamic pressure and the changes in the static solution, and has a 
significant impact on the meniscus shape. 

5. Complete analysis 
The preliminary analysis indicated that surface morphology is most sensitive to the 

flow-induced dynamic pressure, the recoil force arising from interfacial mass transfer 
and the contact angle. It was also shown that recoil always acts to raise the meniscus, 
while dynamic pressure tends to lower it for subcooling and raise it for superheating. 
In this section, we investigate the simultaneous influence of dynamic pressure and 
vapour recoil on morphology in response to changes in liquid/vapour equilibrium. The 
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FIGURE 14. Steady-state flow field/surface solution for Ma = loa, Rs = loa, Bi = 10, Cr = lo-' 
and o = 15". SIS denotes static isothermal solution. 

objective is to evaluate the surface's ability to maintain mechanical equilibrium by 
determining whether solutions exist that simultaneously satisfy the equations of fluid 
motion, temperature and surface geometry. 

Within the context of the one-sided model, the only parameters that directly reflect 
a change in vapour/liquid equilibrium are Rs and Bi, where Vr a All others, 
except w, are fixed at values approximately representative of a 1 to 10 p pore 
subjected to superheating/subcooling levels of lo-' to 1 K, namely Ma = lo2, 
Cr = lO-l, Ca = and f p  = lo3. We first examine the influence of interfacial 
equilibrium while holding heat transfer characteristics and all other dimensionless 
groupings constant. Rs and Vr (K R P )  are varied to model different levels of 
vapour/liquid equilibrium along the surface. The sensitivity of latent heat transport to 
mass transfer is ignored by holding Bi constant at 10, which is the value near which 
recoil is maximized. We begin by focusing on thermocapillary effects by considering the 
approximately non-volatile case in which Rs = lo3. After that, we examine 
progressively lower values of Rs (and higher Vr) to determine how extensively recoil 
either augments or offsets the influence of dynamic pressure. The contact angle w is also 
varied from 15' to 45' to model the effect of various wetting fluids. 

We attempted to obtain a solution for the non-volatile case of Rs = lo3, Ma = loa 
and w = 15". However, with subcooling, the large circulation intensities yielded 
excessive dynamic pressure gradients along the surface near the contact line, and it was 
impossible to obtain convergence between the flow field and surface solutions. Similar 
behaviour was observed with an even larger contact angle of 45". This is indicated in 
figure 14 which shows the flow fields for this case superimposed on the static isothermal 
solution (SIS). With subcooling the surface diverges to a multivalued shape, and we are 
unable to obtain convergence between the flow field and surface. The subcooling case 
in figure 14 actually represents the steady-state solution after the 16th surface iteration. 
With subsequent iterations, the depression near the centreline grows until the surface 
becomes multivalued at x, x 0.1 and 0.9. The same instability was encountered with 
even finer element grids. The divergence indicates that P is strongly influenced by the 
contour and growing depression with each surface iteration. During the first few 
iterations, the meniscus assumes an inflection to accommodate the negative 
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FIGURE 15. Steady-state flow field/surface solution for Mu = lo2, Rs = l/dlO, Bi = 10, Cr = lo-' 
and w = 15". 

contribution of P to the contour angle integration. The flat surface around this 
inflection extends the high-pressure region into the centre, which drives the depression 
even lower. Another contributing effect is the increase in circulation intensity with each 
iteration pass, which is greater than for the fixed-shape counterpart studied in part 1. 
The depressed surface around the centreline serves to increase the net thermocapillary 
stress force and promotes circulation. Consequently, the deformation associated with 
subcooling has the same effect on P as reducing contact angle. It is clear that 
subcooling can lead to excessive surface deformations, especially with highly wetting 
fluids. 

With superheating, a stable steady-state solution was obtained after only eight 
surface iterations. As this state is approached, the meniscus flattens and decreases in 
area due to the pressure drop towards the wall. This tends to reduce the half-cavity 
circulation relative to its non-deforming counterpart. The deformation here models the 
effect of increasing contact angle which serves to reduce the interline pressure gradient 
and ensures stable numerical convergence. As long as the surface retains a positive 
curvature, superheated thermocapillary flow should promote mechanical equilibrium 
along the surface. 

To test whether vapour recoil could reduce or possibly eliminate the pressure-driven 
instability arising from subcooled thermocapillary flow, we investigated the case of 
o = 45", Rs = 1/410 and Vr = 10 (figure 15). The solution for the subcooling mode 
is completely stable and slightly raised with respect to the static isothermal solution 
curve. The order of magnitude increase in Vr is enough to completely offset the 
influence of dynamic pressure. With superheating, the vapour recoil and dynamic 
pressure both act to raise the meniscus, and deformation from the static isothermal 
state is much greater. We also tested the limiting large value of Rs for o = 45" beyond 
which the surface becomes multivalued for subcooling. For Rs = 1 / 4 5  we obtained a 
surface that projects slightly below the static isothermal solution contour, while for all 
values of Rs > 1/45,  the solution becomes multivalued and the iteration diverges. 
Note that smaller contact angles require lower Rr values to ensure convergence and a 
stable solution. 

The pressure and recoil-related deformation resulting from superheating causes an 
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FIGURE 16. Steady-state flow field/surface solution for superheating with Mu = lo2, Rs = 1/2/20, 
Bi = 10, Cr = 10-1 and o = 15'. 

upward-pointing bulge in the middle of the meniscus. Since the surface in figure 15 is 
nearly flat, it is probable that a reduction in Rs from the specified value of 1/.\/10 
should yield an inflection and negative curvature at the centreline. We test this for 
w = 45" by reducing Rr to 1/1/20 and doubling Vr from 10 to 20. The resulting steady- 
state flow field in figure 16 indicates that a stable solution can be obtained with a 
substantial negative curvature at the centreline. It is clear that reducing Rs further will 
cause the surface to become multivalued, first for superheating and then for 
subcooling. 

Although we did not perform any systematic variation of Ma, the outcome of such 
an analysis is easy to predict. Increasing Ma results in increased circulation intensities 
from thermocapillary flow. This in turn produces large meniscus dynamic pressure 
gradients, depressing the meniscus further for subcooling and raising it for 
superheating. Larger values of Ca further magnify this effect. 

In summary, we see that vapour recoil always acts to flatten the meniscus, while 
thermocapillary flow raises and depresses it for superheating and subcooling, 
respectively. These trends are accentuated with larger Ca and Bi. Reducing contact 
angle not only depresses the static isothermal solution contour but also enhances the 
influence of thermocapillary flow by increasing circulation intensity. A combination of 
these effects can easily lead to excessive meniscus rise or depression and possible loss 
of mechanical equilibrium. Because meniscus depression tends to reinforce itself by 
further increasing the net thermocapillary stress force and circulation, highly wetting 
fluids subjected to subcooling are more prone to this instability mechanism. 

6. Conclusions 
The influence of two-phase thermocapillary convection on the free surface behaviour 

of a volatile wetting liquid in a small open cavity has been examined. Owing to the 
significant computational requirements for simultaneous solution of the flow field and 
surface, we initially estimated the kst-order contributions of various normal stress 
terms in the governing equation for surface curvature. This analysis showed that the 
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influence of thermally induced surface tension variation and viscous stress is practically 
negligible. It was also evident that the deformation associated with the flux and 
curvature components of viscous stress exhibit opposite behaviour and tend to 
counteract each other in the case of combined convection. 

The preliminary analysis revealed that the most important terms are vapour recoil, 
dynamic pressure and contact angle. In general, the influence of recoil is independent 
of heating mode and always acts to raise the meniscus. At high Vr, resulting from low 
Rs, the centreline curvature can become negative, and, if Vr is large enough, lead to a 
multivalued surface. The influence of dynamic pressure on surface geometry is quite 
different for subcooling and superheating. The pressure distribution associated with 
subcooling produces a suction in the middle of the meniscus that draws the surface 
down about the centreline. The distribution for superheating, however, is opposite and 
causes an upward bulging about the centreline. The magnitudes of these deflections 
increase as Bi+ 00 and/or Ma -+ co. In combined flow, condensation and evaporation 
both augment the interfacial pressure gradients for either heating mode and enhance 
these deformations further. Additionally, increasing Ca is equivalent to decreasing the 
surface tension and was found to enhance deformations as well. The contact angle 
affects the surface by altering the static solution shape and half-cavity circulation. 
Lowering the contact angle leads to larger dynamic pressure gradients near the sidewall 
and correspondingly greater deformation. 

These trends were confirmed in the complete analysis which accounted for 
simultaneous solution of the flow field and surface. Increasing thermocapillary flow 
tends to depress the interface for subcooling and raise it for superheating, while 
increased recoil resulting from interfacial phase change always acts to raise the surface. 
For subcooling, these two effects tend to cancel each other and suppress deformation. 
It was difficult to obtain stable solutions for highly wetting fluids for subcooling due 
to excessive meniscus depression. A relatively high contact angle of w = 4 5 O  and 
substantial condensation flow at Rs < 1/2/5 was required to obtain a stable solution. 
These results indicate that the menisci of highly wetting fluids can become unstable 
with subcooling, and that liquid/vapour conditions must be carefully selected to 
maintain mechanical equilibrium and pressure differences across porous surfaces. 
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